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Abstract 

Controlled conductive filament formation in the resistive random access memory device is an essential requirement 
for analog resistive switching to develop artificial synapses. In this work, we have studied Au/Ti/HfAlOx/TiN-NP/HfA-
lOx/ITO RRAM device to demonstrate conductance quantization behavior to achieve the high-density memory appli-
cation. Stepwise change in conductance under DC and pulse voltage confirms the quantized conductance states 
with integer and half-integer multiples of G0. Reactive TiN-NPs inside the switching layer helps to form and rupture 
the atomic scale conductive filaments due to enhancing the local electric field inside. Bipolar resistive switching char-
acteristics at low SET/RESET voltage were obtained with memory window > 10 and stable endurance of 103 cycles. 
Short-term and long-term plasticities are successfully demonstrated by modulating the pre-spike number, magnitude, 
and frequency. The quantized conductance behavior with promising synaptic properties obtained in the experiments 
suggests HfAlOx/TiN-NP/HfAlOx switching layer is suitable for multilevel high-density storage RRAM devices.
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Introduction
Resistive random access memory (RRAM) has become 
attractive and it shows promise for future non-volatile 
memory devices due to its simple structure of switching 
layer sandwiched between two electrodes, with high-
density memory structure, high speed, and low electri-
cal power consumption [1–3]. The principle working 
mechanism of RRAM device is believed to be due to 
the formation and dissociation of the conductive fila-
ments (CFs) formed inside the switching layers by apply-
ing external electric fields [4, 5]. However, the stochastic 
nature of CFs formation during device operation can 
hinder the large-scale commercial application of the 
RRAM device. So several process optimizations such as 

doped switching layers, metal electrode selection, bilayer 
switching layer structures, and metal nanocrystal incor-
poration are needed to control the CFs formation to 
improve the device-to-device and cycle-to-cycle vari-
ability [6–13]. Among different techniques, nanoparticles 
embedded oxide-based switching layers are examined 
extensively, influencing CFs formation and improving 
the resistive switching process. Recently, Liu et  al. have 
described that Cu NPs inside SiO2 can control the form-
ing process and, by stabilizing the resistive switching, 
improve the endurance characteristics [14]. Ag embed-
ded Al2O3:Ag:ZnO switching layer also exhibited a high 
Ion/Ioff ratio with gradual SET and RESET characteristics 
[15]. Ag-NPs included Al2O3 switching layers also show 
DC cycling stability due to enhancing the local electric 
field due to the presence of oxygen vacancies and Ag ions 
[16]. Bousoulas et  al. described that multilevel memory 
state, better variability, and long retention were achieved 
by Pt-nanocrystals (NCs) inclusion inside TiOx due to 
local field enhancement [10]. Also, embedding Pt-NCs 
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inside switching layers, the local electric field leads to 
narrow and controlled CFs formation, further enhancing 
the switching performances described by Sakellaropou-
los et  al. [9]. In RRAM, gradual synaptic weight change 
manipulation by applying external stimuli is essential 
for high-density memory storage and artificial synap-
tic device for neuromorphic application. The presence 
of low oxygen vacancies that promotes gradual change 
in conductance states of nanoscale filamentary syn-
aptic devices was observed [17, 18]. The atomic point 
contacts (APCs) were recently studied, which control 
the construction of the quantized conductance states. 
Change in quantized conductance states is the intrinsic 
property of the nanoscale CFs and is commonly found in 
oxide-based switching layers mediated by the formation 
and movement of oxygen vacancies and oxygen ions [4, 
19, 20]. Stepwise increase in conductance due to precise 
atomic control of electron transport in conductive fila-
ments leads to a higher memory density. G0 = 2e2/h (77 
µS) is the quantum conductance unite, where e is the 
electronic charge, and the h is the Plank constant [21, 22]. 
The atomic layer deposition (ALD) technique is promis-
ing for achieving high-density metal nanoparticles with 
controlled thickness [23]. In this work, we have included 
ALD-based TiN-NP into HfAlOx matrix to control the 
quantized conductance state and have studied the synap-
tic properties for neuromorphic applications. Finally, we 
have studied gradual conductance change with integer 
and half-integer multiples of G0 in both SET and RESET 
processes in detail for the RRAM device consisting 
HfAlOx/TiN-NP/HfAlOx switching layer. Also, the short-
term plasticity (STP) and long-term potentiation (LTP) 
were studied by controlling the pulse number and spike 
frequency.

Experiments
Initially, commercially available indium tin oxide (ITO) 
(resistivity ~ 60 Ω/sq)-coated glass was used for device 
fabrication. The surface of ITO was washed stepwise 
with acetone, isopropyl alcohol, and DI water. After 
cleaning immediately, ITO samples were moved for the 
atomic layer deposition chamber (Lucida D100 thermal 
ALD). Nearly 5  nm of HfAlOx (TMA 1 + TEMAH 2) 
was deposited before TiN deposition. HfAlOx alloy ALD 
deposition details have been given in earlier work [24]. 
After deposition of HfAlOx alloy layer, 20 cycles of TiN 
were deposited with a showerhead plasma-type ALD by 
titanium tetrachloride (TiCl4) and NH3 as precursors. 
Another layer of 5 nm HfAlOx alloy dielectric was grown 
to sandwich the TiN-NP inside HfAlOx layers. Using a 
photolithography, Au/Ti bilayer top electrodes (TEs) 
were deposited by an e-beam evaporator with a deposi-
tion rate of 0.3 Å/s. A liftoff process in acetone achieved 

the top electrode with an area of 100 × 100  µm. Cross 
section analysis, elemental profile, the surface morphol-
ogy of different deposited layers were scanned by field 
emission transmission electron microscope (JEOL JEM-
F200) and field emission scanning electron microscope 
(JEOL-7800F). Keithley 4200 SCS semiconductor param-
eter analyzer along with a 4225-PMU ultrafast current–
voltage (I–V) pulse module was utilized for all DC and 
pulse leakage current vs voltage (I-V) characteristics. All 
resistive switching properties were measured with the 
external electrical DC/pulse bias given to the top Au/Ti 
electrode, and the bottom electrode was in the ground.

Results and Discussion
After the sample preparation with a focused ion beam 
(FIB), the cross section of the Au/Ti/HfAlOx/TiN-
NP/HfAlOx/ITO RRAM device was examined by the 
transmission electron microscope (TEM) as shown in 
Fig.  1a. From the TEM image, all the layers from the 
device are clearly shown. The thickness of the overall 
switching layer was ~ 10  nm which was similar to the 
target thickness controlled by the ALD recipe of AlO, 
HfO, and TiN cycles. Also, the cross-sectional energy-
dispersive spectroscopy (EDS) analysis (Fig.  1b) was 
done to detect different layers of the device. The pres-
ence of Au, Ti, Al, Hf, O, and Sn was confirmed by the 
EDS line scan as shown in Fig.  1b. From the atomic 
percentage of Ti profile, the small shoulder of Ti inten-
sity inside the HfAlOx region was detected, which is 
believed to be emerged due to the presence of TiN-NP 
as highlighted by the black circles in Fig. 1b. Scanning 
transmission electron microscope (STEM) along with 
energy-dispersive spectroscopy (EDS) mapping is pro-
vided in Additional file 1: Fig. S1 to confirm all layers in 
the NP-based RRAM device. Although from the cross 
section TEM analysis, the presence of TiN-NP was 
not clear, which may be due to the similar color con-
trast of HfAlOx and TiN-NP or the surface oxidation 
of the TiN surface during 2nd layer of HfAlOx deposi-
tion. Although due to higher atomic concentration of 
Ti from Au/Ti top electrode is dominated, the Ti inten-
sity due to the presence of TiN-NP inside the HfAlOx 
matrix was suppressed. In the previous work, the Ti 
presence was clearly demonstrated by the cross-sec-
tional STEM image, core-level XPS spectra of TiN-NP, 
and elemental profile of Ti across the cross section of 
ITO/HfAlOx/TiN-NP/HfAlOx/ITO RRAM device [24]. 
In the supporting information, to observe the distribu-
tion of TiN-NPs surface morphology on the TiN-NP/
HfAlOx/ITO structure, scanning electron microscope 
(SEM) image is presented in Additional file  1: Fig. S2. 
From Additional file  1: Fig. S2, a clear distribution of 
TiN-NP was achieved at a deposition temperature of 
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300  °C with 20 cycles of TiN ALD. High-density TiN-
NPs distribution on HfAlOx can be promising for 
RRAM applications for controlling oxygen vacancy and 
the formation of controlled conductive filaments dur-
ing device switching operation. Variation in diameter 

of the NPs was observed (ranges from ~ 2 to 25  nm), 
which can be controlled by proper thermal treatment.

Figure  2a and d shows the electroforming and first 
RESET characteristics of Au/Ti/HfAlOx/ITO RRAM 
device with and without TiN-NP inclusion. Devices 
show forming voltages at the range of ‒4.6 V ~ ‒5.5 V as 
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Fig. 1  a Cross-sectional HRTEM of the Au/Ti/HfAlOx/TiN-NP/HfAlOx/ITO RRAM device. Right side magnified switching layer presented. b EDS line 
profile of the RRAM device measured from Au/Ti top electrode to ITO bottom electrode
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Fig. 2  a, d Electroforming at 10 µA Icc and 1st RESET characteristics of multiple Au/Ti/HfAlOx/ITO and Au/Ti/HfAlOx/TiN-NP/HfAlOx/ITO RRAM 
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shown in the comparison characteristics in Additional 
file 1: Fig. S3. However, a reduction in the effective elec-
tric field during the forming process was observed after 
introducing TiN-NP inside HfAlOx matrix as shown in 
Additional file 1: Fig. S3. However, the conduction mech-
anism before forming processes was changed, due to the 
presence of additional intrinsic defects after introducing 
TiN-NP as confirmed by the Additional file 1: Fig. S3. The 
uniformity of forming voltages was also more precise in 
the case of Au/Ti/HfAlOx/TiN-NP/HfAlOx/ITO RRAM 
devices due to the presence of ALD-based TiN-NP.

Also, during the first RESET, the improvement in uni-
form memory window as well as lower RESET voltages 
was observed, as shown in Fig.  2d. Similar improve-
ment was monitored by Wu et  al. in their study with 
nanocrystals-based RRAM devices [25]. Figure 2b and e 
is the typical bipolar resistive switching characteristics 
of both devices. In both devices, the SET and RESET 
properties were clearly demonstrated. After introduc-
ing TiN-NP, the memory window was clearly increased, 
as shown in Fig.  2e. In the supporting information 
(Additional file  1: Fig. S4), the comparison character-
istics of bipolar switching characteristics, endurance 
properties of first 500 cycles, and the distribution of 
LRS and HRS have been given for both devices. In the 
Au/Ti/HfAlOx/ITO RRAM device, the conductive fila-
ments (CFs) form in the canonical shape between top 
and bottom electrode during the electroforming pro-
cess. The presence of tri-valent Al atoms inside tetra-
valent HfO2 transition oxide creates intrinsic oxygen 
vacancies (VO). Also, it is already reported that the 
reactive Ti electrode can scavenge O-ions (formation of 
thin TiOx layer) from underlying HfAlOx insulator due 
to its weakly bonded O-atoms [26]. So in the SET pro-
cess, VO is accumulated near the CFs and the oxygen 
ions (O‒) are depleted due to the external electric field, 
which further connects the top and bottom electrode 
and brings the device into a low-resistance state (LRS) 
[27]. Schematic illustration is described in the inset 
of Fig.  2b. During RESET operation, the O‒ migrated 
back to the tip of the CFs and recombined with VO, 
narrowing the CFs and increasing the device’s resist-
ance (HRS). As shown in Fig.  2e, the enhancement in 
the memory window can be the results from denser and 
bigger CFs due to the surface defects (originated from 
TiOxNy/HfAlOx interface) of embedded TiN-NPs inside 
HfAlOx [9]. The enhancement of Ion/Ioff ratio during 
the endurance test up to 1000 cycles of NP-embedded 
RRAM device clearly indicated that the induced oxy-
gen vacancy generation was prominent due to the 
larger effective area of TiN-NP surface. Also, according 
to Gao et al., the presence of metal NPs inside switch-
ing insulators enhances the local electric field, which 

further helps the formation of CFs and rupture during 
the RESET process [16]. The inset of Fig. 2e shows the 
local field enhancement and formation and rupture of 
CFs during SET and RESET due to TiN-NPs present 
inside amorphous HfAlOx matrix. A similar phenom-
enon has also been reported earlier by Liu et  al. [14]. 
According to Gao et al. and Liu et al., Ag and Cu NPs 
inside the switching layers enhance the electric field 
around the NPs and form the conical shaped conduct-
ing filament, improving the uniformity of the witch-
ing cycles and reducing the switching electric field. 
However, these NPs may dissolve into Ag or Cu cati-
ons during the switching process. These mobile metal 
ions can migrate and deposit on the electrodes. So, the 
SET and RESET process involves both oxygen vacancy 
and migrated metal ions, as reported previously by Gao 
et al. and Liu et al. In this experiment, the TiN-NP does 
not dissolve after applying an external electric field and 
maintaining the original shape. Also, the surface oxida-
tion of TiN-NP helps form a TiOxNy/HfAlOx interface 
which further allows controlled stepwise gradual SET 
and RESET characteristics.

To evaluate the atomic point contacts (APCs) in Au/Ti/
HfAlOx/TiN-NP/HfAlOx/ITO RRAM device with quan-
tized conductance, the electroforming and first RESET of 
the device were restricted with minimum current com-
pliance and RESET voltage as shown in Fig. 3a. CFs were 
found to be formed by slowly increasing the forming volt-
age with a step of ‒0.05 V, and at ~ ‒5.0 V, electroform-
ing was observed at Icc of 10µA. Similarly, during the first 
RESET of the device, with a step voltage of + 0.05 V, full 
RESET was achieved at + 1.2 V. By tuning the conductive 
filament size, the quantized conductance states were con-
trolled due to APCs creation and annihilation process [4, 
28]. Figure 3b shows the RESET I-V characteristics with 
the distinguishable stepwise decrease in currents, indi-
cating different quantized conductance levels. With simi-
lar behavior, repetitive ten cycles were recorded in Au/
Ti/HfAlOx/TiN-NP/HfAlOx/ITO RRAM device. As the 
voltage sweep rate is critical to achieving conductance 
quantization behavior, during the measurement, a very 
slow DC sweep rate was applied (0.002  V/step) as the 
change in quantized states lasted for a very narrow volt-
age region [29]. Normalized conductances (G/G0) have 
been plotted in Fig.  3c, which shows initially the con-
ductance jumps down to ~ 3.5G0 due to CFs dissolution 
atom-by-atom. Continuously increasing the RESET step 
voltage, the conductance of the devices becomes stable 
at integer and half-integer multiples of ~ 2.5 G0, ~ 2 G0, 
and ~ 1.5 G0, which clearly shows the quantized conduct-
ance behavior. Although the physical reason for the half-
integer conductance is yet to be explored, according to 
Shu et al., the possible explanation is assumed to be due 
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to the presence of diffused other atomic metal impurities 
near the CFs shift Fermi energy level of CF [30]. Simi-
lar half-integer conductance was also observed in ZnO, 
HfO2, Nb2O5, SiO2 oxide-based switching layers [4, 5, 19, 
31].

The statistical distribution of the normalized quantized 
conductance is plotted in Fig.  3d. Conductance peaks 
were found to be concentrate near the integer, and half-
integer multiples of G0 counted with quantized conduct-
ance states in every 0.1G0/step as discussed above. So this 

phenomenon reflects the fact that TiN-NP-based HfAlOx 
switching layers are suitable for conductance quantiza-
tion during the switching process. In this case, due to 
the presence of TiN-NP, the nanoscale CFs formation 
during forming process give an ideal condition to real-
ize the quantized conductance [32]. Schematic illustra-
tion is drawn in Fig. 3e, which explains the CF formation 
and dissolution of CF by O‒ recombination to VO. The 
VO and O‒ are separated during the forming process and 
form the localized CFs assisted by the TiN-NPs inside 
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HfAlOx at negative applied voltage to the top electrode. 
After successively increasing RESET voltage step by step 
by positive electric field at the top electrode, the conduct-
ance decreases driven by oxygen ions that recombine 
O‒ to VO in an atomic scale. Precise control of quantized 
conductance state also has been demonstrated by both 
negative pulse from ‒0.54  V/1  ms to ‒0.8  V/1  ms dur-
ing potentiation and positive pulse from + 0.58  V/1  ms 
to + 0.84 V/1 ms during depression at interval of 0.5 s as 
shown in Fig.  3f, and g. Increasing/decreasing conduct-
ance at the read voltage of ± 0.1 V as shown in Fig. 3 con-
firmed the change of conductance by increasing pulse 
amplitude. During application of negative pulse, initially, 
the normalized conductance ~ 1G0, and after application 
of negative pulse amplitude up to ‒0.8  V, the conduct-
ance increases to ~ 3.5G0. A similar decrease in conduct-
ance was observed with stable integer and half-integer 
of G0 after applying pulse amplitude up to ‒0.84 V. This 
behavior shows the stability of the CFs due to the pres-
ence TiN-NP inside HfAlOx matrix. Similar behavior of 

conductance control is also demonstrated by Younis et al. 
and Gao et  al. [29, 33]. Details of measurement tech-
niques and plotting for the quantized conductance are 
given in the supplementary material under Additional 
file 1: Fig. S6(a), and (b).

To emulate the biological synapse through the synap-
tic weight changes is known as synaptic plasticity which 
includes short-term plasticity (STP) and long-term 
potentiation (LTP) and can be measured by excitatory 
postsynaptic current (EPSC) [34–36]. Also, the conver-
sion from STP to LTP process in biological synapses 
can be possible by rehearsing the applied stimulation 
[37]. Synaptic weight (SW) change has been recorded to 
evaluate these characteristics depending on the increas-
ing spike number and frequency, as shown in Fig. 4a–d. 
The EPSC was found to be increased gradually depend-
ing on the spiking number, as shown in Fig. 4a. In sup-
porting information, increasing SW has been presented 
under different applied pulse voltage amplitude (at 
‒0.3 V/100 µs to ‒0.7 V/100 µs) with pulse number of 1 
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to 10 as shown in Additional file 1: Fig. S5. It was clearly 
demonstrated as expected depending on the pulse ampli-
tude and numbers, EPSC increased gradually in accord-
ance with the presynaptic spike. Similar EPSC increment 
behavior dependence of presynaptic spikes voltage was 
observed by Yu et  al. [38]. Maximum EPSC recorded 
during the first and final pulse input was denoted by 
the An and A1. EPSC gain (An/A1) plotted in Fig.  4b 
clearly demonstrates the SW increment depending on 
the pulse number and spike amplitudes. Short-term 
memory (STM) to long-term memory (LTM) transition 
was observed after increasing the spike number from 
1(STM) to 10(LTM) at the spike voltage of ‒0.4 V/100 µs, 
as the postsynaptic current at the base voltage of ‒0.1 V 
increased (resting current) indicated by the arrow in 
Fig. 4a. Similar transition behavior has been observed by 
Kim et al. and Chen et al. [36, 39]. It is interesting to note 
that at low spike voltage (‒0.3 V/100 µs), even after the 
application of 10 pulses, memory transition did not occur 
at the read voltage of ‒0.1 V (shown in Additional file 1: 
Fig. S5), which confirms the short-term plasticity due to 
weak filament formation [35]. Depending on the repeti-
tion of spikes, the STM to LTM transition increased the 
filament size accumulating the O-vacancies near the TiN-
NPs surface inside the HfAlOx matrix. The schematic 
model transition from STP to LTP depends on the pro-
cess of rehearsal repetition, as shown in Fig. 4a [36]. After 
the application of 1 to 5 pulse stimuli, the conductance 
temporarily increases, but due to the weak filament for-
mation, the synaptic weight quickly returns to its initial 
state. Although after application of 10 and more stimuli 
at the same spike amplitude, highly increased conduct-
ance of synapses was observed due to induced strong 
filaments formed by the O-vacancies. As a result, the 
CFs found not to be ruptured quickly, and consequently, 
the pulse-induced O-vacancy inside the switching layer 
remained stored, leading to LTM.

Absorption of O-vacancy near the conductive filaments 
can also be controlled by altering the spike frequency. 
Synaptic filtering characteristics (spike rate-depend-
ent plasticity, SRDP) were also studied with increasing 
applied pulse frequency from 2 to 100  Hz (decreasing 
the spike interval) [40]. As shown in Fig.  4c, the pulse 
amplitude was constant at ‒0.5  V/20  µs and the repre-
sentative EPSC was presented by applying 10 consecu-
tive presynaptic pulses with different frequencies. The 
EPSC gain (A10/A1), as shown in Fig.  4d, was increased 
from 0.2 to 1.7 by increasing the frequency from 2 to 
100 Hz confirmed the filtering characteristics. At low fre-
quency (with longer delay time), the EPSC changes due 
to the applied spike but due to the longer delay, most of 
the accumulated O-vacancies migrated back, leading to 
less EPSC gain[34, 41–43]. Although due to the higher 

frequency enhanced EPSC gain achieved, the diffused 
O-ions (formation of O-vacancy) were unable to reach 
back to its initial state with such a short time[34]. As 
shown in Fig. 4c, the arrow on the resting current after 
100  Hz pulse frequency indicates that the STM turns 
into LTM with stronger intensity. A magnified EPSC at 
the pulse frequency of 100  Hz is presented in the inset 
of Fig.  4d. So, TiN-NP inserted HfAlOx switching layer 
properties can mimic synaptic dynamic high-pass filter-
ing characteristics, which is very important for neuro-
morphic computing [44]. The measurement details and 
data processing method for EPSC variation under differ-
ent spike number and frequency scheme are described in 
Additional file 1: Fig. S7 and Fig. S8.

Conclusion
In summary, we have demonstrated a well-controlled 
stepwise change of quantum conductance in the Au/Ti/
HfAlOx/TiN-NP/HfAlOx/ITO RRAM device. Atomic 
layer deposition of TiN-NP enables controlling a very low 
thickness of the overall switching layer. The presence of 
TiN-NP inside the HfAlOx matrix enhances the memory 
window due to the TiOxNy/HfAlOx interface on the sur-
face of TiN-NP, which helps for gradual change in con-
ductance in atomic scale. The conductance quantization 
and multilevel memory behaviors controlled by TiN-NP 
inside HfAlOx show the suitability for implementing 
high-density memory storage. A conductance state tran-
sition from short-term plasticity to long-term potentia-
tion behavior also suggests that HfAlOx/TiN-NP/HfAlOx 
switching layer can be mimicked similar to biological 
synapses.
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